Aufgabe 47

Gegeben sind eine Polynomfunktion f und zwei Stammfunktionen F und G von f , sowie eine positive reelle Zahl k . Kreuze die zutreffende(n) Aussage(n) an.

F + G ist eine Stammfunktion von f .	
Es gilt $F - G = c$, wobei c eine reelle Zahl ist.	
Der Graph von F entsteht durch Verschieben des Graphen von G entlang der y-Achse.	
$F + G$ ist eine Stammfunktion von $2 \cdot f$.	
Es gilt: $x \cdot f(x) = F(X)$	

Lösungen:

F + G ist eine Stammfunktion von f .	
Es gilt $F - G = c$, wobei c eine reelle Zahl ist.	$\overline{\checkmark}$
Der Graph von F entsteht durch Verschieben des Graphen von G entlang der y-Achse.	$\overline{\mathbf{V}}$
$F + G$ ist eine Stammfunktion von $2 \cdot f$.	$\overline{\mathbf{V}}$
Es gilt: $x \cdot f(x) = F(X)$	

Begründung der Antworten:

Aussage 1: Falsch

$$F(x) = \int f(x) \, dx + c \, 1$$

$$G(x) = \int f(x) \, dx + c \, 2$$

$$F(x) + G(x) = \underbrace{\int f(x) \, dx + c_1}_{=F(x)} + \underbrace{\int f(x) \, dx + c_2}_{=G(x)} = 2 \int f(x) \, dx + c$$

Aussage 2: Richtig

$$F(x) = \int f(x) \, dx + c \, 1$$

$$G(x) = \int f(x) \, dx + c \, 2$$

$$F(x) - G(x) = \underbrace{\int f(x) \, dx + c_1}_{=F(x)} + \underbrace{\int f(x) \, dx + c_2}_{=G(x)} = c_1 - c_2$$

Aussage 3: Richtig

Wegen der Richtigkeit von Aussage 2 gilt:

$$F(x) - G(x) = c$$
 \Rightarrow $F(x) = G(x) + c$

Der Graph von F(x) ergibt sich aus dem Graphen von G(x) durch Addition einer Konstanten c . Dies entspricht einer Verschiebung des Graphen von G(x) entlang der y-Achse.

Aussage 4: Richtig

$$F(x) + G(x) = \underbrace{\int f(x) \, dx + c_1}_{=F(x)} + \underbrace{\int f(x) \, dx + c_2}_{=G(x)} = 2 \int f(x) \, dx + c = \int 2 \cdot f(x) \, dx + c$$

Aussage 5: Falsch

Wenn $x \cdot f(x) = F(x)$ gelten soll, dann muss auch gelten:

$$\begin{array}{rcl} (x \cdot f(x))' & = & F'(X) \\ x \cdot f'(x) + f(x) & = & f(X) \\ x \cdot f'(x) & = & 0 \end{array}$$

Die letzte Aussage ist nur dann richtig, wenn für alle x gilt: f'(x) = 0. Das ist nur dann der Fall, wenn f(x) eine konstante Funktion ist.