Aufgabe 185

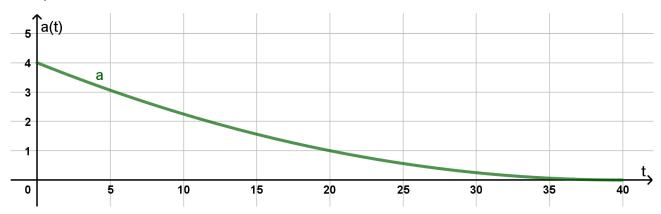
Ein Auto beschleunigt aus dem Stand ($s(0) = 0 \, m, \, v(0) = 0 \, m/s$). Die Beschleunigung nimmt stets ab und wird bei Erreichen der Höchstgeschwindigkeit gleich null. Annäherung t Sekunden nach dem Start wird die Beschleunigung durch die Funktion a mit $a(t) = 0,0025t^2 - 0,2t + 4$ (in m/s²) beschrieben. a(t) gilt bis zum Erreichen der Höchstgeschwindigkeit.

- a) Bestimme das Zeitintervall $[0; t_1]$, in dem das Auto beschleunigt.
- b) Zeichne den Graphen der Funktion a im Intervall $[0;t_1]$ und berechne die Höchstgeschwindigkeit in km/h. Wie wird die Höchstgeschwindigkeit im Graphen von a dargestellt?
- c) Berechne die Länge des Weges, den das Auto bis zum Erreichen der Höchstgeschwindigkeit zurücklegt.
- d) Interpretiere den Ausdruck $\int_{10}^{20} a(t) dt$ im Kontext.

Lösungen:

Ad a)

Das Auto beschleunigt solange $a(t) \neq 0$ ist.


$$0,0025t^{2} - 0,2t + 4 = 0$$

$$t^{2} - 80t + 1600 = 0$$

$$t_{1,2} = 40 + \sqrt{1600 - 1600}$$

$$t = 40$$

Adb)

$$v(t) = \int a(t) dt = \int (0,0025 t^2 - 0.2t + 4) dt = 0,0008 \overline{3} t^3 - 0.1 t^2 + 4t$$
$$v(40) = 53, \overline{3} \ m/s \approx 192 \ km/h$$

Ad c)

$$s(t) = \int v(t) dt = \int (0,0008\overline{3}t^3 - 0.1t^2 + 4t) dt = 0,000208\overline{3}t^4 - 0.0\overline{3}t^3 + 2t^2$$

$$s(0; 40) = 1600 m$$

Ad d)

Der Ausdruck gibt die Änderung der Geschwindigkeit im Zeitintervall $\ [10\,;\,20]\$ an.